Paper on relative activity of metals towards electrocarboxylation

Paper on relative activity of metals towards electrocarboxylation

6 May 2021

Jury's paper on the relative activity of metal cathodes in electrocarboxylation has just appeared online in Electrochimica Acta!


Relative activity of metal cathodes towards electroorganic coupling of CO2 with benzylic halides

DOI: 10.1016/j.electacta.2021.138528


Electrochemical reduction of benzylic halides represents a convenient route to generating carbanions for their subsequent coupling with CO2 to obtain various carboxylic acids. Despite the industrial prospects of this synthetic process, it still lacks systematic studies of the efficient catalysts and reaction media design. In this work, we performed a detailed analysis of the catalytic activity of a series of different metal electrodes towards electroreduction of benzylic halides to corresponding radicals and carbanions using cyclic voltammetry. Specifically, we screened and summarized the performance of 12 bulk metal cathodes (Ag, Au, Cu, Pd, Pt, Ni, Ti, Zn, Fe, Al, Sn, and Pb) and 3 carbon-based materials (glassy carbon, carbon cloth, and carbon paper) towards electrocarboxylation of eight different benzylic halides and compare it to direct CO2 reduction in acetonitrile. Extensive experimental studies along with a detailed analysis of the results allowed us to map specific electrochemical properties of different metal electrodes, i.e., the potential zones related to the one- and two-electron reduction of organic halides as well as the potential windows where the electrochemical activation of CO2 does not occur. The reported systematic analysis should facilitate the development of nanostructured electrodes based on group 10 and 11 transition metals to further optimize the efficiency of electrocarboxylation of halides bearing specific substituents and make this technology competitive to current synthetic methods for the synthesis of carboxylic acids.